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Abstract—Successful proof-of-concept laboratory experiments P Fitoring and T [pca reature I Tobie ook
on cortically-controlled brain computer interface motivate con- A Do I lpeak A”ggnmem Extraction Cbssiﬁcaﬁo,‘:
tinued development for neural prosthetic microsystems (NRIs). SSiP:;TS ‘ ~— &

In order to improve the NPMs, one of the main issue is to M‘“ﬂﬂl"‘lﬁ‘y‘“"ﬂll;‘u’\ 6 CS%)
realize the realtime spike sorting processors (SSPs). TheSB =
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detects the spikes, extracts the features, and then perforgthe Threshold Spgkes PCs | Features i/laal:)fin; Table
classification algorithm to differentiate the spikes for diferent Trreshold Principal Component Clustor Contour
firing neurons. Several architectures have been designedrfehe Estimation Analysis (PCA) Generation
spike detection and feature extraction. However, the hardare P = A ®
for classification is missing. To complete the SSP, a density Tk — YN >

based hardware-oriented clustering algorithm is adapted dr the
hardware implementation for the classification. In the hardwvare
architecture level, the concepts of convolution and data nese
are adapted to further reduce the power consumption. The fina Fig. 1. The hardware operation of spike sorting processtfeswill focus on
implementation achieves 32.6,W and 0.25 mnt in 90nm low- the the hardware design of the training device for the diaasion stage.
leakage process.
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|. INTRODUCTION hardware design. In the hardware architecture level, we try
P further reduce the power consumption of the device due

. . . . . t
_Splke_sortlng IS an Important .tOOI for ar_nalyzmg Neura the large amount of data access power. The rest of this
signals in the realm of neuroscience. It aims to sort the

detected neural activities, or spikes, to the correspayiifing paper is organized as follow. In section Il, we introduce som
’ - @'m. reliminary knowl he hardwar ign of spik
neurons. The performance of the cortically-controlledirbra pre ary knowledge about the hardware design of spike

machine interface for paralvzed patients may be im roVsarting. Section Il gives a review of the adapted hardware-
paraly P Y ProvVeGented algorithm in this design. The proposed hardware

:‘g;g;?sha'gigczgzgie tsgrgggigisu;sn[agll-t(i)r:: ?Sfptizg Ogg:ﬁre‘xrchitecture _is represented in segtion IV._Section \% shdlw_s t
. . n%plementatlon results, and section VI gives the conclusio

processor on the neural recording microsystems for the-long
term experiments [2]. The power consumption and the size 1. PRELIMINARY
of the device are two of the major concerns for the hardware ]
optimization. A. Spike Sorting

The on-chip spike sorting system is generally composed ofNeurons in brain communicate with each other through
four stages: the spike detection, the filtering and aligrtmetthe firing of action potentials, or the so-called spikes. SEhe
the feature extraction and the classification. Each stage spikes can be detected and recorded by extracellular micro-
the system can be divided into the on-line processing engiglectrodes implemented in the brain. Many neuroscientific
and the algorithm training engine. The training engine castudies and applications require the measurements of the
collect a considerable amount of neural signals and extinact spikes for further improvement. However, the measuredsign
algorithm parameters used for the on-line processing engiare often composed of multiple spikes from a group of close-
Many on-line processing hardware units for spike sortingeghaby neurons, and how to analyze and identify the signals from
been proposed [3], [4]. The principal component analysig, odifferent neurons accurately becomes an important isqike S
of the training algorithms for the spike feature extractiorsorting is the process to classify the detected spikes to the
has also been designed in VLSI hardware [5]. However gorresponding source neurons.
the previous works, the hardware for the training part of Figure 1 shows a general architecture of the hardware
classification has not yet been proposed. operation for spike sorting processors. The raw neuraladsgn

In this paper, we aim to implement the hardware of thafter the amplification and digitization are passed to thkesp
training engine for classification. We first choose a densitgorting processor. There are four major steps in the process
based hardware-oriented algorithm proposed in [6] for thbe spike detection, the filtering and alignment, the featur
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sames ’ feature space is previously quantized¥d basic units, or the

: g o g cells. N is the level of quantization along each dimension.

: M : rs Next, a discrete symmetric profiling kernel is chosen for
density accumulation. When each feature comes in, we first

@ ® © @ look for which cell contains the location of the feature, and

Fig. 2. The block diagram of the density-based clusterimgrithm. then add the kernel weights to the cell and its adjacent.cells

Through this accumulating procedure, we can get a density
map like Fig. 2 (a) after all the spike features are read.

extraction, and the classification. Each stage can be furthe 1N Second step of the algorithm is to cluster the cells in the
divided into the on-line processing part and the traininf&ature space according to the der_15|ty map cre_ated in the firs
part. The on-line processing engines deal with the secalenft©P- For each cell, we compare its density with that of the
input signals in real time. The training engines compute tidiacent cells, and a shift vector that indicates the doedo

parameters for the on-line processing engines by coI@ctiH’e adjacent cell with the highest density value is gendrate

a considerable amount of neural data and implementing thé then group the current cell and the cell that the shift

training algorithms. In this paper, we will focus on the/€Ctor points to together, give them the same CI_USt_er Ia_bel,
training engine in the classification stage for the spikéisgr @nd move on to the next cell for comparison. This iterative
processor. The training engine for classification can réad ©SNifting and labeling procedure will be terminated when the
spike features extracted by the feature extraction device &€l With the local maximum of density is found. Start from
implement the clustering algorithms to classify the featufifférent cells and repeat the procedure described aboge, w
space. The mapping information of the feature space, suchC88 classify the whole feature space. The initial clusterin
a feature-to-cluster table, can then be generated anchreiur PFOCESS IS finished when all the cells are checked at least
the on-line processing engine. The on-line processingnengPNCe- A cell-to-cluster table as shown in Fig. 2 (b) will be

is then able to classify the detected spikes in real time Gynerated after this step. Finally, in the merging step, leek
table-look-up classification. some merging conditions for the cells on the boundary of

different clusters and merge these clusters if the criteriof
B. Requirements for the Hardware Implementation the conditions are met. Fig. 2 (c) illustrates the cellHgster

Note that the power consumption and the area are two majaPle after the merging process, which is the final results of
concerns for the spike sorting processors. In order to impr'é‘e classification. This table can be further transferreth&o
ment the hardware for the training engine of classificaten,on-line classification device for table-look-up mappindgieT
hardware-friendly algorithm should be chosen at first. €hefe-mapping results of the on-line processing engine is show
have been several algorithms used for the classificatioheén ©S Fig. 2 (d).
off-line spike sorting, such as k-means algorithm and me
shift algorithm [7], [8]. However, due to the large amount o
required memory and computation complexity, most of them The power and area are two main issues for the hard-
are not very feasible for hardware implementation. In thigare implementation. In the algorithm level, we can use
work, we choose a density-based hardware-oriented aigoritth€ memory usage and the computation complexity of the
proposed in [6] for the hardware design because of the ,@gor[thm to estimate the feasibility for hardwarg rediaa.
ported smaller memory usage and computation complexityTr'i“S is because the memory usage often contributes to most

comparison with other traditional algorithms. The proaedu Of the area, and the computation complexity can reflect the
of the algorithm will be introduced in the next section. dynamic power consumption of a hardware device. Therefore,

a good algorithm for hardware implementation should have
IIl. REVIEW OF THEHARDWARE-ORIENTEDALGORITHM  the characteristics of low memory usage and computation
FOR CLASSIFICATION complexity.

In this section, we will briefly review the procedure of In comparison with the the traditional mean shift and
the density-based hardware-oriented algorithm adaptéiisn k-means algorithm, the density-based algorithm introduce
work, and discuss its feasibility for hardware implemeiotat above reports a smaller amount of required memory and

] lower computation complexity. One reason is that since the
A. Algorithm Procedure spike features are transformed into the density domain with

Figure 2 shows the overall procedure of the density-basgdantization before the clustering procedure, the memory
hardware-oriented algorithm for classification [6]. Insttdl- usage can be reduced. Besides, in both k-means and mean
gorithm, the concept of density estimation is adopted fer ttshift algorithm, a large amount of of distance calculatien i
proved better performance of the mean shift algorithm thauopted during the iterative clustering procedure. Howewe
the traditional k-means algorithm. There are three stepsthe density-based algorithm, only comparisons between the
the algorithm. The first step of the algorithm is to create thdensity of the cells are required. Since the comparison is
density information of the extracted feature spaces. Ireilordsimpler to realize than the distance calculation for hardwa

. Feasibility for Hardware Implementation
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power, the concept of convolution is adapted. We first naaé th
a0 220 I R \ \l since the chosen profiling kernel is symmetric, the densiity o
density symmetric accumulated - current kernel next kernel each cell is equal to the number of features within that cell
profiling kernel  spike 1 1 K .
@) (b) convolutes the kernel. That is, for each @gll , in the feature
space, the density, , can be computed as
Fig. 4. (a) The procedure of the convolution method. (b) Tla¢adeuse 1 1
scheme used during the procedure of convolution.
amep Aoy = Y (kig) (Naiy—y)

i=—1j=—1

devices, the computation reduction and thus power savingvhere k; ; represents the kernel weights angd , is the
of the device can be expected. For more details about tieéal number of spikes detected within the o€ll . =, vy are
comparison results, please refer to [6]. Therefore, thesitien the corresponding coordinates of the cell in the 2D feature
based algorithm should be more feasible for the hardwaspace. The procedure of convolution is also shown in Fig. 4

design of the classification training device. (a). Therefore, the first step for density accumulation can
be separated into two stages. First, instead of accumglatin
IV. VLSI ARCHITECTUREDESIGN the kernel weights on all the cells within the kernel when

In this section, the hardware architecture design baseldeon €ach feature comes in, we simply accumulates the number of
density-based classification algorithm discussed in sedti  features of the corresponding cell. Since only one memory
is proposed. We first introduce the direct form of the haréwatinit needs to be accessed in this case, the operation freguen
architecture adapting the original procedure, and a matlifief the system can be slower than that of the direct form under

architecture for power reduction is proposed and discussedhe same input feature rate. In the second stage, we apply the
convolution procedure to calculate the correspondingitiens

A. Direct Form of the System for each cell sequentially. Note that during this procedare

According to the density-based algorithm, we may deriv&ata reuse scheme shown in Fig. 4 (b) can be adopted. Through
the working schedule of the system directly as shown in Fig. Buffering the reusable data, the amount of data access can be
Two on-chip SRAMs are used to store the density informatidHrther reduced.
and the cluster label for each cell. The working schedule isWith the modified two-stage procedure for density map
briefly described as below. When the system detects the sp@#istruction, about 80% of the amount of memory access in
features, the system calculates the corresponding membi§ original on-line accumulating step can be saved. Tra tot
address, and adds proper kernel weights on the memory ugigount of memory access of the system can also be reduced
instead of recording the raw features. In this desig8,>a3 to 40% of the original amount. Therefore, the reduction on
symmetric kernel is applied, and one read-write procedsiredower consumption should be available.
required for 9 memory units when one set of the extracted
features comes in. Therefore, in order to handle real-tinTe
density accumulation, the operation frequency should siefa  Although the convolution method described above may
than the rate of the input feature set. Next in the clusterigghieve efficient power saving for the system, we should note
state, the system iteratively retrieves the accumulatedities that additional memory units are required to temporarilyesa
stored in SRAM 1 and writes the labeling results into SRANhe number of features during the procedure of convolution.
2. Finally in the merging step, the system allocates both tAd&erefore, the area and the leakage power of the hardware may
label and the density information stored on the two SRAM&Iso increase. This problem is partially released by therseh
to check the merging conditions. If there is a merging everitf memory reuse. As Fig. 5 shows, there should have been one
the cluster labels for some memory units may change, amre SRAM after inserting the convolution step which is used
the clustering results stored in SRAM 2 should be updatdd. store the feature numbers. However, we can find that the
After finishing the merging step, we can access SRAM 2 wata life time of this SRAM will not overlap with SRAM 2
get the final mapping table for the on-line processing devitecause the information of the feature number in each cell

Memory Tradeoff for the Convolution Method

for classification. is used only during the convolution step. Therefore, we can
_ _ reuse SRAM 2 for storing the number of features during the
B. Power Reduction: The Convolution Method on-line feature accumulation, and the increment of memory

Analyze the direct form of the hardware architecture, wésage caused by the convolution method can be minimized.
can find that in each step during the classification procedure
the system needs to access the two SRAMs frequently for
processing. Therefore, a large amount of memory accessrpowerlhe training device for the classification part of the SSP
may be consumed. We further observe that due to the langith the proposed architecture is implemented in UMC 90nm

V. IMPLEMENTATION RESULTS
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TABLE |

0 50 100 150 200 250 300
IMPLEMENTATION RESULTS IN90ONM CMOS RROCESS ‘ ‘ ‘
Direct Form
Supply Voltage (Vort) 1.08 ) |
Operation Frequency (MHz) 2 convouton [T
Core Area (mm) 0.25 Convolution
Power Consumptiong{W) 32.6 + Data Reuse .:’
Convolution
+ Data Reuse .:l

+ Memory Reuse

B Leakage Power B Dynamic Power: combinational @ Dynamic Power: non-combinational

Fig. 7. The comparison of power consumption of differentrferof the system.

2MHz. The dynamic power consumption for the combinational
part and non-combinational part are estimated by the ratio
of their area. We also assume that the dynamic power for
the non-combinational part is proportional to the amount of
memory access. According to the comparison results, the
leakage power of the final architecture is slightly increbdae

to the 24% increment of memory usage. However, since the
dynamic power is greatly reduced, the total amount of power
consumption decreases. The final architecture efficienilgs

Fig. 6. The chip layout of the hardware implementation. about 87% of the power consumption.

VI. CONCLUSION

low-leakage CMOS process. Figure 6 shows the chip layoutin this paper, a training device of classification for thekspi
and table | summarizes the final implementation results. Tkerting processors is implemented. We first adapt the densit
operation frequency of the system is set to be 2MHz andlhiased hardware-oriented algorithm for the system because
able to handle real time feature processing for 1M featut® sef the relatively small amount of memory usage and low
per second with a resolution of 16 bits per feature. Abogbmputation complexity in comparison with the traditiokal
3,000 spike feature sets can be recorded. The core areanefns and mean shift algorithm. In the hardware architectur
the hardware is 0.25 minwith 12.1k logic gates and 28.7kblevel, we involve the convolution method and the concept of
SRAM. The average power consumption is 32\. data reuse to reduce the large amount of data access power
Figure 7 gives an estimated power comparison betweeten on-line accumulating the density map. The scheme of
different forms of the system based on the synthesis resulteemory reuse is also adopted to minimized the increment of
The input rate is set to be 1M feature sets per second for @le required memory due to the convolution step. According
cases. In order to maintain realtime performance, the tipara to the final implementation results, the power consumpton i
frequency of the direct form is 18MHz. For other form$2.6 W and the core area is 0.25 mrim 90nm low-leakage
that adapt the convolution method, the operation frequéncyprocess. This on-chip classification training device may be



further integrated with real-time SSPs for the realizatain
embedded spike sorting microsystems.
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